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INTRODUCTION:

Wall curvature is a widely used technique to passively enhance convective heat transfer and it is particularly effective in the
thermal processing of highly viscous fluids. These geometries produce a highly uneven convective heat flux distribution along

the circumferential coordinate, impacting on the performance of the fluid thermal treatment.

Figure 1: Cylindrical helicoidal heat exchanger

GOVERNING EQUATIONS:

The governing equations are integrated numerically in a steady state condition with the assumption of fully developed flow

for both what concerns the hydrodynamic and the thermal problem. Under the of N i ible and
constant thermophysical properties fluid, these in case of negligible viscous dissipation, are:
Vu=0
p%: —Vp+uViu
DT _over
Dt

To reduce the computational cost, translational periodic boundary conditions for the inlet and outlet sections were used.
The pressure difference 4p along each module is selected according to expected mass flow rate while the temperature

difference 4 T is related to the wall heat flux per unit surface g as follows:

ar =LA
m-c,
Boundary conditions:
+  Initial condition: © Wall:
Inlet: Stationary wall
Mass flow rate: 1= 0.004[*9/s] > Re =364 No slip condition: Vg .y = 0 ["/s]

Constant temperature profile: T,y = 294.9[K] Constant heat flux: qg,z,y) = 127258 [V/,,2]
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RESULTS:

The centrifugal force due to the geometry of the coil deform significantly the velocity field. These effects produce two
secondary flow called Dean’s vortices. This vortices push the fluid from the inner bend of the coil to the outer bend and

this cause a non-uniform temperature distribution at the fluid-wall interface.

Figure 3: Dean’s vortices

Figure 5: Temperature profile

Darcy friction factor:

Table 2: Darcy friction factor

Cylindrical Shah [ CFD
f 0.176 0.21 0.26

Since the velocity filed is modified by the Dean’s vortices, the
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The heat transfer results are evaluated in terms of the average Nusselt number described as follows: Figure 6: Pressure drop fom = ——
" Re
h-D
Nu = where:
A
the pressure drop is described in terms of the friction factor defined as follows: Nusselt Number:
A:, D4 Table 3: Average Nusselt number [1] Shah, R. K., and S. D. Joshi, “Handbook of Single-Phase Convective Heat Transfer” ,
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Nu 10.61 10.1 10.53 10.70 transfer coefficient in helical pipe" . Heat transfer Journal, vol( 119) pp. 463(1997).
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Figure 2: Local convergence analysis Figure 7: Circumferential Nusselt number
EXPERIMENTAL PROCEDURE:
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Figure 8: Experimental apparatus Figure 9: Acquired thermographic image
CONCLUSIONS:
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Figure 10: Nusselt number ratio, experimental validation Figure 11: Nusselt number ratio, experimental results

The comparison between the numerical results and the confidence interval of the
experimental data shows a good agreement, thus validating the CFD model (Figure
10) . The experimental data are also in good correspondence with the data available
in literature, as shown in Figure 11.

The high variation in the circumferential Nusselt Number causes an overheating of
the fluid nearby the inner bend while at the outer bend it’s not heated as well. This

observation is very important if the fluid evolving inside the het exchanger is food,

such as milk; in this case the steri

izing effect is not uniform in the cross-sectional | L
Figure 12: Helicoidal heat exchanger
area. For this reason, to guarantee a lower level of the total bacteria charge, the for food industry
fluid have to be overheated reducing the organoleptic property of the food and
increasing the energy consumption.
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